Data Governance: Aligning Your Brand Values with Data Regulation and Legal Compliance

CDO Exchange 2016

Richard J Self
Research Fellow, Big Data Laboratory
University of Derby
http://tinyurl.com/ppyg6t8
http://computing.derby.ac.uk
email: r.j.self@derby.ac.uk
http://computing.derby.ac.uk/bigdatares/
Efficiency is becoming ever more critical in an era of very low interest rates and increasing similarity of products and services. Much of it is becoming so similar that it is difficult to deliver long term, sustainable competitive advantage. Thus much of the industry is effectively a “Utility”.
Essentially no improvements in the success rates of IT related projects over the last 22 years!

Causes are holistic at the project level.

Old definitions pre- 2013

project success: The project is completed on-time and on-budget, with all features and functions as initially specified.

project challenged: The project is completed and operational but over-budget, over the time estimate, and offers fewer features and functions than originally specified.

project failed: The project is cancelled at some point during the development cycle.

Post 2013, **Successful projects** were redefined as being those which were on time, on budget with a satisfactory result, which is in some ways a lower bar. The
change was because so many projects had previously been classified as not delivering all the initially specified functionality. So, presumably, it was assumed that this new definition should deliver more “successful” projects. It is extremely ironical that it has, on the contrary, delivered even more challenged projects, see the comparisons for 2011 and 2012.
One of the most worrying aspects of the use of IT is the level of value destruction that it causes. At the upper boundary, this suggests that IT causes more value destruction that even the Financial Services sector caused with the 2007/2008 Credit Crunch because it continues to occur with no apparent improvement in sight for better implementation of IT related projects.

On this slide, the lower boundary for costs of IT failure is based on a very simple direct cost of the failed projects and some of the costs of security failures.

The upper boundary, estimated by Roger Sessions at http://simplearchitectures.blogspot.co.uk/2009/09/cost-of-it-failure.html, is based on a variant of Total Cost of Ownership.

Clearly neither of these two numbers is “accurate” however, they do suggest that we need to consider project risks much more carefully.
LASCAD: failure of communications systems in London leading to major problems with control of London Ambulances.

Denver International: Baggage handling, failure of algorithms to be able to manage new luggage handling automated systems. Previous indications that the Operations Research techniques could not cope with the problem.

Heathrow T5: failures to learn from Denver International debacle, lack of testing and training.

Knight Capital: 1 Aug 2012, loss of $467M in 45 minutes. Repurposed system flag, incomplete roll-out of code to 7 out of 8 servers to replace old functionality and replace with new. 8th server retained old functionality. No implementation oversight. No effective monitors of error trades. Destroyed company. Target, two major problems, forecasting pregnant women and security hack (75M sets of personal ID).

Egg Bank: failure to have rapidly scalable infrastructure to cope with unplanned demand on first day of launch. No means of load shedding leads to complete collapse of the system.

Derby Kingsway Roundabout: new large roundabout with traffic lights. Timing sequence problems leading to gridlock in the retail centre and surrounding area for two weeks. Once lights switched off, traffic flow far better than before. New high capacity roundabout turns out to be the solution, not traffic lights.
Common Themes

- Requirements capture and specification
 - Mis-match between needs and specification
 - Incorrect algorithms
 - Missing features and needs (security prime case)
- Unit test failures
- Integration test failures
- User acceptance failures
- Volume test failures
- Inappropriate test data / contexts or modelling of algorithms
- Machine Learning / AI systems
- Inappropriate HCI factors
- Modern “continuous beta standard” software
Classic software testing often only addresses verification of software to the detailed spec.

User Acceptance Testing attempts to address Validation but is far too late in the development cycle.
How can the Testing function move to a much earlier stage in the development cycle?

How can the disciplines be applied at stage 2 where it will have the most impact on success and value for money?
Most testing is verification that software meets the specification

UAT attempts to validate the systems against the real needs of the users and customers but this is far too late in the process.

How can the initial requirements be validated before the expensive stages are started? This is, however, difficult due to the problems of actually achieving a completely accurate set of requirements and then an accurate and complete specification.

The challenge is, therefore, to begin to apply the techniques of testing to the Requirements capture process and the Specification development.

Whilst this is conceptually simple, it is actually complicated, even for the waterfall process. It is much more difficult for Agile and DevOps approaches. How can we apply Testing methodologies to Requirements capture and the other design processes.
A very familiar example of the failures through the Project development and delivery process
Project Governance

More than just Testing
Governance is ..

- doing the right thing in the right way at the right time with the right resources to the right quality in the right place for the right reasons ……
ISO 27002 and its sister standards in the 27K range are called the standards for Information Security. However, the original intent by the British Standards Organisation was the it should be called Information Governance. Use this context to evaluate the wording of the section, rather in the rather more limited Information Security context.

The full text of this section is

It is essential that an organization identifies its security [Governance] requirements. There are three main sources of security requirements:

a) the assessment of risks to the organization, taking into account the organization’s overall business strategy and objectives. Through a risk assessment, threats to assets are identified, vulnerability to and likelihood of occurrence is evaluated and potential impact is estimated;

b) the legal, statutory, regulatory and contractual requirements that an organization, its trading partners, contractors and service providers have to satisfy, and their socio-cultural environment;

c) the set of principles, objectives and business requirements for information
handling, processing, storing, communicating and archiving that an organization has developed to support its operations.

Resources employed in implementing controls need to be balanced against the business harm likely to result from security issues in the absence of those controls. The results of a risk assessment will help guide and determine the appropriate management action and priorities for managing information security risks and for implementing controls selected to protect against these risks.

UK Companies Act 2006, section 172 (1)

(1) A director of a company must act in the way he considers, in good faith, would be most likely to promote the success of the company for the benefit of its members as a whole, and in doing so have regard (amongst other matters) to—

(a) the likely consequences of any decision in the long term,

(b) the interests of the company's employees,

(c) the need to foster the company's business relationships with suppliers, customers and others,

(d) the impact of the company's operations on the community and the environment,

(e) the desirability of the company maintaining a reputation for high standards of business conduct, and

(f) the need to act fairly as between members of the company.
History and current experience tells us that our current approaches to testing do not lead to satisfactory systems and apps.

A fundamentally new approach to the application of the concept of testing to system design, development and implementation is needed.

How effective are current requirements capture processes? How are they verified and validated? How do you ensure that they are comprehensive and complete? Because if they are not, the resultant system will not deliver the expected benefits and will result in a wide range of vulnerabilities.

Is security a late “bolt-on”? It should be at the core of the requirements capture process.

When was the last time that the HCI concept was actually tested? See J Nielson work.

A key lesson from the Standish Group Chaos reports is that projects with “challenging” targets, timescales and resource budgets will either be challenged or will fail. To paraphrase one of their reports, “allocate at least 40 contingency to your most thorough project estimates and then project manage everything like
crazy and you might just be lucky to be successful!”
If we are to really begin to address the problem of challenged and failed projects, using the Standish Group definitions, we need to totally re-think what we mean by the term “Testing”.

Software Testing experts have much to contribute to this re-think across all these aspects of system development and delivery.
This is a list of questions that can help you to gain a full understanding of many of the factors that can affect the success of your project.

See http://computing.derby.ac.uk/c/big-data-analytics-analytics-12-vs/ for more on the subject.
Value

- Is the project really business led? What are the questions that can be answered by the project and will they really add value to the organisation and who will get the benefit and what is the benefit? Is it monetary? Is it usability? Is it tangible or intangible?
- What is the value that can be found in the data? Is the data of good enough quality?

Vulnerability

Is Security designed into the system, or added as an afterthought? Major consequences leading to significant reputation damage

Incorrect processing leads to reputation damage
Big Data brings new problems which must be included in the testing process for
Big Data based projects
Detecting Anomalies

- Single reading errors very difficult to detect, unless there are other data sources that can give a context.
- In time series data, there may be algorithms which can be used to identify “rogue” data points, what are they and how reliable are they? How can they be tested?

Sensor calibration drift

- The calibration of all sensors drifts over a period of time. How can this be detected?
- What is the performance data that characterises this? How can this be included to improve overall accuracy?

Tech Stack failures

- Assisted GPS stack has significant problems at start-up, errors up to 1800km for first reading.
- Significant problems in a range of conditions, even in circumstances with excellent satellite visibility!!

Multi-Source data integration

- Financial services – using social media data – connection to corporate master data. How definite is the connection for “John Smith”? Massive adverse consequences for incorrect connections.
- Location data, e.g. IP address used for location identification. E.g. in the
USA IP addresses without certain ownership allocated to a single Lat / Long in the centre of the USA (600M IP Addresses at the location).
Many very significant issues with machine learning

Modern Machine Learning technologies are extremely opaque to humans. It is almost impossible to determine exactly what the machine has learned. Neural networks are particularly problematic. “Faith in Technology” is significant.

1990s example of training a system to distinguish between images of friendly and enemy tanks on the battlefield. System actually learned to distinguish between sunny desert scenes and forest scenes due to the nature of the training photos.

Development of Predictive Analytics now becoming done by Model Factories (e.g. SAS) with fully mechanised processes to choose the best predictive model and algorithm. Often the retraining is repeated every 3 or 6 months with the new data collected over that period. Who is involved in proving that the new algorithms should be used (testing). What are the organisational implications of having fluid algorithms? What are the vulnerabilities to the organisation if a customer or supplier can prove that the new (or old) model would have given a more favourable decision to the one that was operational at the time of the decision.

Current assumptions seem to be that the Data Scientists will develop and train the machine learning and run the Model Factories. Is there any involvement of
the Testing experts in this process? Should they be involved?
University of Derby

- Many PhDs in Big Data and Analytics (including CERN related research)
- MSc Big Data Analytics
- MSc Cyber Security
- MSc MSc Digital Forensics and Computer Security
- BSc IT (our Analytics course)
- BSc Data Science
- BSc Computational Physics (for "FS rocket scientists")
- http://www.derby.ac.uk/engineering-technology/elec-comp-maths/comp/
Thank you.
Questions and Discussion

Richard J Self
Research Fellow, Big Data Laboratory
University of Derby
http://tinyurl.com/puyg6t8
http://computing.derby.ac.uk
email: r.j.self@derby.ac.uk
The 12 Vs of Big Data Governance

A guide to the questions
Volume \((S, G)\)

Mountains
- How much?
- Who?
- How?

Oceans (Teahupo’o)
- Storage
- Dangers
- Technology?

Brian Bielmann

Wikimedia
Velocity \((S, G)\)

- Infrastructure
- Need for immediacy?
- Time to analyse

- How fast?

25
Variety (T, S, G)

Twitter

Fruit salad?
- What?
- Connections?
- Similarity?
- Original purpose?

Choices
- Data
- Structures
- Ownership

http://applelovepiece.wordpress.com/cell-phones/
Variability \((T, S, G)\)

- Consistency
- Inconsistency
- Periodicity

- Data
- Analyses
- Predictions

Frankfurt weather forecast

Wikimedia

seasons
Value (G)

Gold crystals
- Define Value?
- Monetary?
- Understanding?
- Whose value?

Applications
- Functionality?
- Convenience?
- Questions
- Answers?
Veracity (T, S, G)

We know we err

- Truthful when?
- Identifying the dross?

YouGov

Finding the Truth

- Data
- Algorithms
- Data cleansing

WikiMedia
Validity (E, T, S, G)

UK Penny Black

- Context?
- Where?
- When?
- Correlation or Causation?

Johnson, 2008

Logical Deduction / Induction

- Data
- Algorithms / Models
- Prediction
Volatility (T, E, S, G)

- How quick?
- Value left?

- Data
- Predictions
- Sources of expertise
Verbosity \((T, G)\)

- Text
- Context
- Meaning / semantics
- Grammar
- Syntax
- Redundant
- Knowledge
Vulnerability (T, E, S, G)

OWASP: relationship between threat agent and business impact

- Legal (e.g. DPA and Right to be Forgotten)
- Reputational
- Financial
- Data

- Policies
- Processes
- Access
- Who and what skills?
Verification (T, E, S, G)

- How?
- Reliability?
- Context?

- Data
- Algorithms and models

1st Japanese Passport 1866

Digital Signature process
Visualisation (T, E, G)

- Manipulation
- 2D / 3D
- Video

As presented by the UK Treasury

Log scale
Breached
Official
Guidelines

As corrected by Sir Andrew Dilnot

- Who changes?
- Guidelines and standards?