Inspiring Undergraduates to High Achievement in STEM (and other) Subjects

Richard J Self
Research Fellow, Big Data Laboratory
University of Derby

http://tinyurl.com/ppyg6t8
http://computing.derby.ac.uk
email: r.j.self@derby.ac.uk
My Journey

- See http://tinyurl.com/zsdx66s for more information
Agenda

- Context
- Current Issues for STEM (and other) subjects
- Pedagogy?
- Thoughts and Questions?
- Discussion
Context

- Students demand engaging approaches
- Employers demand soft skills
- Traditional education
 - Is boring
 - Fails to deliver good soft skills
 - Mediocre levels of achievement
- Very rapid change in software products
 - High stress levels
Analytics Skills

Addressing the Issues

- Need for
 - Enthusiastic students
 - Total engagement
 - Excellence in achievement
 - Outstanding soft skills for
 - Employment
 - Life-long learning
Pedagogic Philosophies

- Academic as
 - “Domain Expert”
 - Knows it all
 - Teaches domain facts, theories, software details
 - or
 - “Learning-to-Learn Expert”
 - Guides and mentors the learning process
 - “Teaches” how to learn, questions, where to find answers
Philosophy

“Education is not filling (leaky) buckets but lighting fires (of enthusiasm)” (Plutarch, modified)

Guided Learning

- No formal software teaching
- Provide access to software, manuals, training materials, CBT tests
- Provide big challenges
- Students as co-producers
Traditional Approach

- **Lectures**
 - Describe syntax and grammar
 - Use cases
 - Worked examples

- **Workshops and Tutorials**
 - Lots of Exercises
 - Tutor as problem solver, often with answers

- **Assessments**
 - Tightly defined task
 - Demonstrations / Code inspections, etc.
All too Familiar?

Thus, for any nondeterministic Turing machine \(M \) that runs in some polynomial time \(p(m) \), we can devise an algorithm that takes an input \(\omega \) of length \(n \) and produces \(E_{M,\omega} \). The running time is \(O(p^2(m)) \) on a multitape deterministic Turing machine and...

WTF, man. I just wanted to learn how to program video games.

\[N = N_n \]

Sipser CH7

\[N_n = (A_n \cup B_n) \cup (A_n \cup B_{n-1}) \cup \ldots \cup A_n \]
“New” Approach

- Lectures
 - Outline of capabilities and purpose of software
 - Student presentations of their learning

- Workshops
 - Explore and learn the language capabilities
 - Apply new knowledge
 - Learn and use sources of technical “how to do”
 - More questions, very few answers

- Assessment
 - Big challenge
 - Presentations of critical reflection and insights
Emerging IT Product Developments (1)

- Learn IBM Bluemix and Watson Analytics
 - IBM staff present Tutorials

- Data Analytics challenge
 - Find open source data
 - Identify interesting / valuable questions
 - Develop valuable insights
Emerging IT Product Developments (2)

- Research based Article (40%)
 - A critical evaluation of the topic “Big Data Analytics and the Internet of Things: Technology and Data Integration to develop Smart Insights”

- Reflective critical evaluation of the challenge as a 15 minute PowerPoint with voice over (60%)
 - Requirements, development, implementation and insights

- See http://tinyurl.com/h7pjv2u for best 4
Student Reflections

- “Your approach to teaching is nothing short of refreshing; not only is it inspiring but also encourages creativity and novel thinking (an important aspect of education that I often find is overlooked)”

- “This approach to teaching enables me to easily become motivated, but what’s more, I now feel like I am making a genuine impact in the field”
Student Reflections

- “The assignments that Richard sets are very broad with room for interpretation. The broadness of the question allows students to make the assignment their own; taking the topic and running with it”
- “Something that I value a lot is that finding novel ideas for our assignments is constantly encouraged”
- “This leads to a grand spectrum of findings, with the best assignments getting the opportunity to be published”
Student Reflections

- Richard reviews and gives us formative feedback on our assignments allowing us to improve not only our assignments but also our understanding of the topic at hand.
Thoughts and Questions

- Use of Contact time
- Meeting student where they are
- Formative feedback
- “Robust” assessment criteria
- Learning Analytics for confirmation